j-core Design Walkthrough

open source
ardware o meme o e e

Q: What parts of Linux Systems are
Open and Under your Control?

* Modern laptops have more arm/mips processors
than x86

— USB controller? Exploitable:

http://arstechnica.com/security/2014/07/this-thumbdrive-hacks-computers-
badusb-exploit-makes-devices-turn-evil/

— Hard drive controller? Exploitable:

http://hackaday.com/2013/08/02/sprite_tm-ohm2013-talk-hacking-hard-drive-
controller-chips/

System management mode, ACPI...

Do you trust your <big vendor’s> RNG ?

Taking Back Control of HW and SW

open source
ardware

What is the minimum system
that can run Linux?

<4+— CLOCK
INPUT OUTPUT
— CPU —

<+—TIMER

The definition of a ‘CPU’
(for the purposes of this talk)

* Has a Flat 32bit memory space
— All pointers ‘just work’ (no separate spaces)

e A port of GCC

— Regular, efficient 32-16-8 bit int-short-char

e Executes instructions ‘fast enough’
— Servicing streaming Ethernet traffic: about 30MIPs

System Requirements

CPU (of course)

Memory

— 8 megs RAM runs practical Linux workloads
— less is possible, but awkward

Storage (load kernel+initramfs into memory)
Some form of |/O

— Usually, and at first, just a UART

A Timer (interrupt).

Things you don’t need

* Anything else, actually

— Video, audio, keyboard, persistent storage
* An MMU, or any ‘fancy’ CPU features.

— FPU, SMP, even cache is optional

A History Lesson

7 g
L Clinux

The Linux/Microcontroller project is a port of Linux to systems
without a Memory Management Unit (MMU).

uClinux first ported to the Motorola MC68328: DragonBall Integrated
Microprocessor. The first target system to successfully boot is the
PalmPilot using a TRG SuperPilot Board with a custom boot-loader
created specifically for our Linux/PalmPilot port.

(January 1998)

What did we do?

* New SH2 instruction set compatible core design kit
— called "j2" because trademarks haven't expired.

— clean-room implementation, initially by Canadian engineers
* built for design reuse
* Then hired original SuperH team members to work on it afterwards
— Source is VHDL using programming model developed by European Space
Agency
e Verilogis low level like assembly, VHDL is a HLL
* Design Kit contains high level abstractions for future cores

 SOC builder system

— Links together peripherals automatically
* E.g.Serial, mmc, Ethernet
* Can produce FPGA bitstream, ASIC RTL, C emulator source
* SMP capable but not finished yet

Why recreate existing architecture?

- Tools exist: compiler, kernel, debugger, strace...
- Leverage massive R&D outlay in SuperH

- 5 stage RISC (full Harvard architecture)

- instruction set density (16 bit fixed length)

- simple highly optimized design

- original designers/implementers still around

- Old chips are prior art vs. "breathing is patented”

Code Density : Efficiency

Fig. 2. Total size of benchmarks (includes some platform-specific code, so does not strictly reflect code density)

256 - — éllfé\g
@ 192 === cMbedded
it .lll o
] ... ll I EEE -
0 .
o Q S N
.\\Q é\% & Q;oQ N ,bcg <b <\ °.> DS %(_09 i \%&b {gb

Source http //web eece.maine. edu/“vweaver/papers/lccd09/|ccd09 den5|tv pdf

 There *Are* other metrics, bit none actually

matter more (unless something is broken)

- Note: ARM paid millions to Hitachi to use SuperH patents in
Thumb instruction set... which just expired.

Patent Expiration

e SuperH ISA had a huge effort put into it
— See above about efficient GCC.

* The SuperH architecture was developed by Hitachi a
qguarter century ago.

e Last patent on SH2 (Sega Saturn) expired in October
2014.

— That’s why we can release this now

— |last SH4 (Dreamcast) patent expires in 2016.
e SuperH ISA was the blueprint for ARM Thumb

The basic SuperH design:

5 stage ‘classical’ RISC pipeline, with some additions

FETCH DECODE EXECUTE MEMORY WRITE BACK

| |
| |
—_—
hs¥ucion | | N >I > MEMORY '—’I
PREFETCH [r—— yoander '
BUFFER | | |
uCode | 1
Sequancer RISC —
Ppelne I I
Carml ‘ | |
i | ouT
_ >
i\ uCode Pages DSP ! MAC A
- }—»

Lo

Pretty simple to implement, except the Instruction Decoder / Expander

tex 7

N

- . -
e end bl s F
== =~ Sy R——)
i e ...

Spartan 6 & K

FPGA floor plans

(E1) A e R Hao0 B UULIG b ug uw kT (1] g ua

X0Y0

d

J Series Computation Core Cluster Roadmap
Unit: Arithmetic Operations per Second

2TOpS=sfprssnssnsssnnnn
0.5TOps pe=====svscscssns
Driver Assist
Subsystem, Customer
128G0p5 L S S T P U S —
32GOPS presssssssnssssssssssssssssrisssisissIiisIErIIIIIIIEEEEESEEEssIIRERRRRESSRSES
8GOps
Signal Processing loT First Device:
2GOpS pr=sszssssssssssssssssssssas Next-Generation Power - - - - - Smart Energy [nstruments
Transmission and
Distribution, loT / Energy Management SoC
500MOps FPGA and ASIC implementations
IPEIVIOI IR @00 il
Generic loT Devices I
2014 2015 2016 2017

Calendar Year

Demonstration Platforms

Our j2 processor core can run linux on low-cost FPGA
Spartan6 platforms such as Numato Labs” Mimas2

We are launching a custom development board (Turtle Board)
with the same form factor as Raspberry Pi &

(Please support out Kickstarter)

So, how do you use it for anything?

 VHDL and build system are under a BSD license
* Just use an FPGA: S$15 gets you UP, S40 SMP + DSP
— Plus any peripheral your application requires

* Make any chip you want

— Royalty free
e 180nm ASIC of SOC we're demoing costs <10 yen
— Processor only, about 2 and a half cents

* Disposable computing at "free toy inside" level
* Think loT : ‘Trillion Sensor Network’ economics, but running Linux

e j-core.org, nommu.org (uclinux-ng),

e Source, documentation, tutorials, mailing lists
* We assume you've never done hardware before.

— Still a bit sparse but filling sites out as we go
e Patches welcome. No question too stupid.

Practical Hardware: FPGAs and ASICs

Total Cost

Crossover point

NRE generation n+1

A

Crossover point
generation n

Number of Units Source: Xilinx 2014

How: VHDL, not Verilog

Although Verilog is more commonly used in certain

geographies..

 VHDL is the preferred language in developments initiated or
led by the European Space Agency.

 The VHSIC Hardware Description Language (VHDL) is a formal
notation intended for use in all phases of the creation of
electronic systems. Because it is both machine readable and
human readable, it supports the development, verification,
synthesis, and testing of hardware designs, the
communication of hardware design data, and the
maintenance, modification, and procurement of hardware.

These 2 things are not the same...

Actually... Belavioal

[|
It’s about the type systema | VHDL
system. o] Verilog
Verilog don’t have one 1
(to speak of) o
In VHDL, everything* is a T
derived type. cae | —
Even + is ‘just’ and

overloaded operator. HDL modellive capability

Going further : Structured VHDL Desigh Method
* In order to overcome the limitations of the classical 'dataflow’
design style (large number of concurrent VHDL statements
and processes, leading to bad readability and increased
simulation time), a 'two-process' coding method is proposed:
one process contains all combinational logic, whereas the
other process infers all (and only) the registers.

* The use of record types to increase readability and the safe
use of variables to reduce simulation time. The method has

been applied on several designs made by or for ESA.
-Jiri Gaisler, http://www.gaisler.com/doc/vhdI2proc.pdf

Avoiding Common Errors

 We developed a pre-processor perl tool (v2p) to avoid
latches, and other similar coding errors .
— The .vhm file is a dialect of vhdl; sensitivity lists are generated by the
perl script

* This has resulted in highly reliable RTL, and greatly increased
the efficiency of our internal development process

2 >.

Even Further : Automated ISA ->
RTL Sim->FPGA->ASIC->SW Tools Flow

— —

v
FPGA Verification ASIC Flow Docs

Software
Firmware Flow
2015/03/15 23

ISA Generator

[JoN | SH-2 Instruction Set.ods

W-B-AREER%E 5 - R BEEEBEEC 22

il HClE=¢

' HelveticaNeue 4 (10 B & & & € -__ = 0.0 5 S= = -~ %
D102 Jx 2. = CASRm,Rn @RO Y=
D = G | H | 1 | J | K L
| Operation XBUS YBUS ALUX ALUY AY
101] When a tLyte inRnequalsabytein » Rn Rm

102 0010 nnnn mmmm 0011 |Rn—TEMPO Rn Y
0010 memmm 001450} z

104 I_ When Rn=Rm,1—-T Rn Rm

105 0010 nnnn mmmm 0011 |Fail, exit

106 0010 nnnn mmmm 0011 |TEMPO — (R0) RO TEMPO

107 * 0011 nnnn mmmm 0100 |1-step division (Rn + Rm) Rn Rm ROTCL ARITH
0010 nnnn mmmm 0111 | MSB of Rn— Q, MSB of » Rn Rm

0011 nnnn mmmm 1101 |Signed, Rn x Rm, MACH, MACL Rn Rm

|_ Unsigned, Rn x Rm, MACH, MACL Rn Rm

I_ Sign-extends Rm from byte — Rn Rm MANIP
I_ Sign-extends Rm from word = Rn Rm MANIP
- 0110 nnnn mmmm 1100 | Zero-extends Rm from byte — Rn Rm MANIP
I_ Zero-extends Rm from word — Rn Rm MANIP

SO M

108

109

110

m

12

13

114

M 4 » M| Sheetl-Table1l [&

! @ [Find Find All (| Mateh Case &%

Sheet1/1 PageStyle Sheet 1 - Table 1

What can you do with this now?

 Download bitstream + vmlinux/initramfs, install
on fpga board, boot kernel to shell prompt

« HOWTOs with background info
— Where to order FPGA board(s)
— Download and install xilinx/digilent tools

* Free download for linux/mac, but alas no open source
bitstream compiler yet. OpenOCD installer is todo item.

— Build new bitstream from source
— Program nommu Linux (gcc/binutils/musl toolchain)

Codewalk Through

Simple VHDL Example
— Simulation
— Synthesis example

SoC Generator Input

— Peripherals and busses

CPU Core code organization
— Pipeline and ISA decoder generator

CPU RTL Simulation
— Run the RTL without hardware

J-Core.org

 Watch for a Git Repository and a mailing list:

J-Core@J-Core.org
http://Lists.)-Core.org

