
j-core	Design	Walkthrough	



Q:	What	parts	of	Linux	Systems	are	
Open	and	Under	your	Control?	

•  Modern	laptops	have	more	arm/mips	processors	
than	x86	
– USB	controller?	Exploitable:	
	hJp://arstechnica.com/security/2014/07/this-thumbdrive-hacks-computers-
	badusb-exploit-makes-devices-turn-evil/	

– Hard	drive	controller?	Exploitable:	
hJp://hackaday.com/2013/08/02/sprite_tm-ohm2013-talk-hacking-hard-drive-
controller-chips/	

•  	 System	management	mode,	ACPI…	
•  	Do	you	trust	your	<big	vendor’s>	RNG	?	



Taking	Back	Control	of	HW	and	SW	



What	is	the	minimum	system	
that	can	run	Linux?	



The	definiaon	of	a	‘CPU’	
(for	the	purposes	of	this	talk)	

•  Has	a	Flat	32bit	memory	space	
–  All	pointers	‘just	work’	(no	separate	spaces)	

•  A	port	of	GCC	
–  Regular,	efficient	32-16-8	bit	int-short-char	

•  Executes	instrucaons	‘fast	enough’	
–  Servicing	streaming	Ethernet	traffic:	about	30MIPs	



System	Requirements	

•  CPU	(of	course)	
•  Memory	
– 8	megs	RAM	runs	pracacal	Linux	workloads	
–  less	is	possible,	but	awkward	

•  Storage	(load	kernel+initramfs	into	memory)	
•  Some	form	of	I/O	
– Usually,	and	at	first,	just	a	UART	

•  A	Timer	(interrupt).	



Things	you	don’t	need	

•  Anything	else,	actually	
– Video,	audio,	keyboard,	persistent	storage	

•  An	MMU,	or	any	‘fancy’	CPU	features.	
– FPU,	SMP,	even	cache	is	opaonal	



A	History	Lesson	

	
The	Linux/Microcontroller	project	is	a	port	of	Linux	to	systems	
without	a	Memory	Management	Unit	(MMU).	
	
uClinux	first	ported	to	the	Motorola	MC68328:	DragonBall	Integrated	
Microprocessor.	The	first	target	system	to	successfully	boot	is	the	
PalmPilot	using	a	TRG	SuperPilot	Board	with	a	custom	boot-loader	
created	specifically	for	our	Linux/PalmPilot	port.	
	

(January	1998)	



What	did	we	do?		
•  New	SH2	instrucaon	set	compaable	core	design	kit	

–  called	"j2"	because	trademarks	haven't	expired.	
–  clean-room	implementaaon,	iniaally	by	Canadian	engineers	

•  built	for	design	reuse	
•  Then	hired	original	SuperH	team	members	to	work	on	it	amerwards	

–  Source	is	VHDL	using	programming	model	developed	by	European	Space	
Agency	
•  Verilog	is	low	level	like	assembly,	VHDL	is	a	HLL	
•  Design	Kit	contains	high	level	abstracaons	for	future	cores	

•  SOC	builder	system	
–  Links	together	peripherals	automaacally	

•  E.g.	Serial,	mmc,	Ethernet	
•  Can	produce	FPGA	bitstream,	ASIC	RTL,	C	emulator	source	
•  SMP	capable	but	not	finished	yet	



Why	recreate	exisang	architecture?	

-	Tools	exist:	compiler,	kernel,	debugger,	strace...	
-	Leverage	massive	R&D	outlay	in	SuperH	

	-	5	stage	RISC	(full	Harvard	architecture)	
	-	instrucaon	set	density	(16	bit	fixed	length)	
	-	simple	highly	opamized	design	
	-	original	designers/implementers	sall	around	

-  Old	chips	are	prior	art	vs.	"breathing	is	patented”	



Code	Density	:	Efficiency	

	
	
	

	
Source:	hJp://web.eece.maine.edu/~vweaver/papers/iccd09/iccd09_density.pdf	
	

•  There	*Are*	other	metrics,	bit	none	actually	
maJer	more	(unless	something	is	broken)	

-	Note:	ARM	paid	millions	to	Hitachi	to	use	SuperH	patents	in	
Thumb	instrucaon	set…	which	just	expired.	



Patent	Expiraaon	
	

•  SuperH	ISA	had	a	huge	effort	put	into	it	
– See	above	about	efficient	GCC.	

•  The	SuperH	architecture	was	developed	by	Hitachi	a	
quarter	century	ago.	

•  Last	patent	on	SH2	(Sega	Saturn)	expired	in	October	
2014.	
– That’s	why	we	can	release	this	now	
–  last	SH4	(Dreamcast)	patent	expires	in	2016.		

•  SuperH	ISA	was	the	blueprint	for	ARM	Thumb	



The	basic	SuperH	design:	
5	stage	‘classical’	RISC	pipeline,	with	some	addiaons	

	

PreJy	simple	to	implement,	except	the	Instrucaon	Decoder	/	Expander	



FPGA	floor	plans:	Spartan	6	&	Kintex	7	

	
	



J	Series	Computaaon	Core	Cluster	Roadmap	
Unit:	Arithmeac	Operaaons	per	Second	

500MOps	

8GOps	

128GOps	

2014	 2015	 2016	

Driver	Assist	
Subsystem,	Customer	

in	Automoave	

Calendar	Year	

32GOps	

2GOps	

125MOps	

J2 
32b RISC	

J2+ 32b RISC 
SMP 

+  
S-Core DSP Array	

J4 32b RISC SMP 
+ 

SIMD Array	0.5TOps	

2TOps	

2017	

Generic	IoT	Devices	

First	Device:	
Smart	Energy	Instruments	
IoT	/	Energy	Management	SoC	
FPGA	and	ASIC	implementaaons	

Signal	Processing	IoT	
Next	Generaaon	Power	

Transmission	and	
Distribuaon,	
Medical,	

Infrastructure	Sensors		



Demonstraaon	Plazorms	
•  Our	j2	processor	core	can	run	linux	on	low-cost	FPGA	

Spartan6	plazorms	such	as	Numato	Labs’	Mimas2	
	
	

	

•  We	are	launching	a	custom	development	board	(Turtle	Board)	
with	the	same	form	factor	as	Raspberry	Pi		

•  (Please	support	out	Kickstarter)	



So,	how	do	you	use	it	for	anything?	
•  VHDL	and	build	system	are	under	a	BSD	license	
•  Just	use	an	FPGA:	$15	gets	you	UP,	$40	SMP	+	DSP	
–  Plus	any	peripheral	your	applicaaon	requires	

•  Make	any	chip	you	want	
–  Royalty	free	

•  180nm	ASIC	of	SOC	we're	demoing	costs	<10	yen	
–  Processor	only,	about	2	and	a	half	cents	

•  Disposable	compuang	at	"free	toy	inside"	level	
•  Think	IoT	:	‘Trillion	Sensor	Network’	economics,	but	running	Linux	

•  j-core.org,	nommu.org	(uclinux-ng),		
•  Source,	documentaaon,	tutorials,	mailing	lists	

•  We	assume	you've	never	done	hardware	before.	
–  Sall	a	bit	sparse	but	filling	sites	out	as	we	go	

•  Patches	welcome.	No	quesaon	too	stupid.	



Pracacal	Hardware:	FPGAs	and	ASICs	

Source:	Xilinx	2014	



How:	VHDL,	not	Verilog	
Although	Verilog	is	more	commonly	used	in	certain	
geographies..	
•  VHDL	is	the	preferred	language	in	developments	iniaated	or	

led	by	the	European	Space	Agency.	
•  The	VHSIC	Hardware	Descripaon	Language	(VHDL)	is	a	formal	

notaaon	intended	for	use	in	all	phases	of	the	creaaon	of	
electronic	systems.	Because	it	is	both	machine	readable	and	
human	readable,	it	supports	the	development,	verificaaon,	
synthesis,	and	tesang	of	hardware	designs,	the	
communicaaon	of	hardware	design	data,	and	the	
maintenance,	modificaaon,	and	procurement	of	hardware.	



These	2	things	are	not	the	same…	

•  Actually…	

•  It’s	about	the	type	
system.	

•  Verilog	don’t	have	one	
(to	speak	of)	

•  In	VHDL,	everything*	is	a	
derived	type.	

•  Even	+	is	‘just’	and	
overloaded	operator.	



Going	further	:	Structured	VHDL	Design	Method	

•  In	order	to	overcome	the	limitaaons	of	the	classical	'dataflow'	
design	style	(large	number	of	concurrent	VHDL	statements	
and	processes,	leading	to	bad	readability	and	increased	
simulaaon	ame),	a	'two-process'	coding	method	is	proposed:	
one	process	contains	all	combinaaonal	logic,	whereas	the	
other	process	infers	all	(and	only)	the	registers.		

•  The	use	of	record	types	to	increase	readability	and	the	safe	
use	of	variables	to	reduce	simulaaon	ame.	The	method	has	
been	applied	on	several	designs	made	by	or	for	ESA.		

-Jiri	Gaisler,	hDp://www.gaisler.com/doc/vhdl2proc.pdf	



Avoiding	Common	Errors	

•  We	developed	a	pre-processor	perl	tool	(v2p)	to	avoid	
latches,	and	other	similar	coding	errors	.	
–  The	.vhm file	is	a	dialect	of	vhdl;	sensiavity	lists	are	generated	by	the	

perl	script	

•  This	has	resulted	in	highly	reliable	RTL,	and	greatly	increased	
the	efficiency	of	our	internal	development	process	

	



Even	Further	:	Automated	ISA	->	
RTL	Sim->FPGA->ASIC->SW	Tools	Flow	

2015/03/15	 23	

ISP	in	
.ods	

Processor	
Docs	

CPU	
Generator	 RTL	

Code	
SoC	

Generator	

SoC	
Spec	.ods	

Preprocess	
Wrapper		

RTL	

Synth	
RTL	

Docs	 C	
Headers	

Linux	OS	
Dev	Tree	

FPGA	
Synth	

GHDL	
RTL	Simulator	

Std	Cell	
Synthesis	

Tool	Chains	

FPGA	 ASIC	Flow	 Somware	
Firmware	Flow	Docs	Verificaaon	



ISA	Generator	



What	can	you	do	with	this	now?	

•  Download	bitstream	+	vmlinux/initramfs,	install	
on	fpga	board,	boot	kernel	to	shell	prompt	

•  HOWTOs	with	background	info	
– Where	to	order	FPGA	board(s)	
– Download	and	install	xilinx/digilent	tools	

•  Free	download	for	linux/mac,	but	alas	no	open	source	
bitstream	compiler	yet.	OpenOCD	installer	is	todo	item.	

–  Build	new	bitstream	from	source	
–  Program	nommu	Linux	(gcc/binuals/musl	toolchain)	



Codewalk	Through	

•  Simple	VHDL	Example	
– Simulaaon	
– Synthesis	example	

•  SoC	Generator	Input	
– Peripherals	and	busses	

•  CPU	Core	code	organizaaon	
– Pipeline	and	ISA	decoder	generator	

•  CPU	RTL	Simulaaon	
– Run	the	RTL	without	hardware	



J-Core.org	

•  Watch	for	a	Git	Repository	and	a	mailing	list:	

J-Core@J-Core.org	

hJp://Lists.J-Core.org	


