Turtles all the Way Down:

Running Linux on Open Hardware

Q: What parts of Linux Systems are
Open and Under your Control?

* Modern laptops have more arm/mips processors
than x86

— USB controller? Exploitable:

http://arstechnica.com/security/2014/07/this-thumbdrive-hacks-computers-
badusb-exploit-makes-devices-turn-evil/

— Hard drive controller? Exploitable:

http://hackaday.com/2013/08/02/sprite_tm-ohm2013-talk-hacking-hard-drive-
controller-chips/

System management mode, ACPI...

Taking Back Control of HW and SW

open source
ardware

What is the minimum system
that can run Linux?

<4+— CLOCK
INPUT OUTPUT
— CPU —

<+—TIMER

The definition of a ‘CPU’
(for the purposes of this talk)

* Has a Flat 32bit memory space
— All pointers ‘just work’ (no separate spaces)

e A port of GCC

— Regular, efficient 32-16-8 bit int-short-char

e Executes instructions ‘fast enough’
— Servicing streaming Ethernet traffic: about 30MIPs

System Requirements

CPU (of course)

Memory

— 8 megs RAM runs practical Linux workloads
— less is possible, but awkward

Storage (load kernel+initramfs into memory)
Some form of |/O

— Usually, and at first, just a UART

A Timer (interrupt).

Things you don’t need

* Anything else, actually

— Video, audio, keyboard, persistent storage
* An MMU, or any ‘fancy’ CPU features.

— FPU, SMP, even cache is optional

A History Lesson

7 g
L Clinux

The Linux/Microcontroller project is a port of Linux to systems
without a Memory Management Unit (MMU).

uClinux first ported to the Motorola MC68328: DragonBall Integrated
Microprocessor. The first target system to successfully boot is the
PalmPilot using a TRG SuperPilot Board with a custom boot-loader
created specifically for our Linux/PalmPilot port.

(January 1998)

Why recreate existing architecture?

- Existing compiler, kernel, debugger, strace...
- Leverage massive R&D outlay in SuperH
- 5 stage RISC (full Harvard architecture)
- instruction set density (16 bit fixed length)
- simple highly optimized design
- original designers/implementers still around
- Old chips are prior art vs. "breathing is patented”

Patent Expiration

e SuperH ISA had a huge effort put into it
— See above about efficient GCC.

* The SuperH architecture was developed by Hitachi a
qguarter century ago.

e Last patent on SH2 (Sega Saturn) expired in October
2014.

— That’s why we can release this now

— |last SH4 (Dreamcast) patent expires in 2016.
e SuperH ISA was the blueprint for ARM Thumb

Code Density : Efficiency

Fig. 2. Total size of benchmarks (includes some platform-specific code, so does not strictly reflect code density)

256 - — éllfé\g
@ 192 === cMbedded
it .lll o
] ... ll I EEE -
0 .
o Q S N
.\\Q é\% & Q;oQ N ,bcg <b <\ °.> DS %(_09 i \%&b {gb

Source http //web eece.maine. edu/“vweaver/papers/lccd09/|ccd09 den5|tv pdf

 There *Are* other metrics, bit none actually

matter more (unless something is broken)

- Note: ARM paid millions to Hitachi to use SuperH patents in
Thumb instruction set... which just expired.

The basic SuperH design:

5 stage ‘classical’ RISC pipeline, with some additions

FETCH DECODE EXECUTE MEMORY WRITE BACK

| |
| |
—_—
hs¥ucion | | N >I > MEMORY '—’I
PREFETCH [r—— yoander '
BUFFER | | |
uCode | 1
Sequancer RISC —
Ppelne I I
Carml ‘ | |
i | ouT
_ >
i\ uCode Pages DSP ! MAC A
- }—»

Lo

Pretty simple to implement, except the Instruction Decoder / Expander

What did we do?

* New SH2 instruction set compatible core design kit
— called "j2" because trademarks haven't expired.

— clean-room implementation, initially by Canadian engineers
* built for design reuse
* Then hired SuperH architects to work on it afterwards
— Source is VHDL using programming model developed by European Space
Agency
e Verilogis low level like assembly, VHDL is a HLL
* Design Kit contains high level abstractions for future cores

 SOC builder system

— Links together peripherals automatically
* E.g.Serial, mmc, Ethernet
* Can produce FPGA bitstream, ASIC RTL, C emulator source
* SMP capable but not finished yet

J Series Computation Core Cluster Roadmap
Unit: Arithmetic Operations per Second

2TOpS=sfprssnssnsssnnnn
0.5TOps pe=====svscscssns
Driver Assist
Subsystem, Customer
128G0p5 L S S T P U S —
32GOPS presssssssnssssssssssssssssrisssisissIiisIErIIIIIIIEEEEESEEEssIIRERRRRESSRSES
8GOps
Signal Processing loT First Device:
2GOpS pr=sszssssssssssssssssssssas Next-Generation Power - - - - - Smart Energy [nstruments
Transmission and
Distribution, loT / Energy Management SoC
500MOps FPGA and ASIC implementations
IPEIVIOI IR @00 il
Generic loT Devices I
2014 2015 2016 2017

Calendar Year

Demo Platforms

e Qurj2 processor core can run linux on low-cost FPGA Spartan6
platforms such as Numato Labs’ mimas2, or Avnet’s Lx9 microboard

 We are currently working to develop a custom development board
with the same form factor as Raspberry Pi

So, how do you use it for anything?

* Releasing VHDL and build system under BSD license

 Make any chip you want

— Royalty free
e 180nm ASIC of SOC we're demoing costs <10 yen
— Processor only, about 2 and a half cents

* Disposable computing at "free toy inside" level
* Think loT : “Trillion Sensor Network’ economics, but running Linux
e nommu.org (uclinux-ng), Opf.org (zero-p-f)

— Source, documentation, tutorials, mailing lists
* We assume you've never done hardware before.

— Still a bit sparse but filling sites out as we go
e Patches welcome. No question too stupid.

How: VHDL, not Verilog

e Although Verilog is more commonly used in certain
geographies..

 VHDL is the preferred language in developments initiated or
led by the European Space Agency.

 The VHSIC Hardware Description Language (VHDL) is a formal
notation intended for use in all phases of the creation of
electronic systems. Because it is both machine readable and
human readable, it supports the development, verification,
synthesis, and testing of hardware designs, the
communication of hardware design data, and the
maintenance, modification, and procurement of hardware.

These 2 things are not the same...

Actually... Belavioal

[|
It’s about the type systema | VHDL
system. o] Verilog
Verilog don’t have one 1
(to speak of) o
In VHDL, everything* is a T
derived type. cae | —
Even + is ‘just’ and

overloaded operator. HDL modellive capability

Example code : Grey Vector Type

package gray_pack is
type gray_vector is array (natural range <>) of std_logic;

function "+" (L: gray_vector; R: integer) return gray_vector;

function "+" (L: gray_vector; R: integer) return gray_vector is
variable res : gray_vector(L'range);
begin
res := gray_vector(gr_inc(std_logic_vector(L)));
return res;
end "+";

Example code : CPU Top Level

type cpu_instruction_i_tis record
d :std logic vector(15 downto 0);
ack :std_logic;
end record;

component cpu is port (

clk :in std_logic;

rst :in std_logic;

db_o : out cpu_data_o_t;

db_i in cpu_data_i_t;

inst_o : out cpu_instruction_o _t;
inst_i :in cpu_instruction_i_t;
debug o :outcpu_debug o t;
debug i :in cpu_debug i t;
event_ o :outcpu_event o_t;
event_i in cpu_event_i t);

end component cpu;

Going further : Structured VHDL Desigh Method
* In order to overcome the limitations of the classical 'dataflow’
design style (large number of concurrent VHDL statements
and processes, leading to bad readability and increased
simulation time), a 'two-process' coding method is proposed:
one process contains all combinational logic, whereas the
other process infers all (and only) the registers.

* The use of record types to increase readability and the safe
use of variables to reduce simulation time. The method has

been applied on several designs made by or for ESA.
-Jiri Gaisler, http://www.gaisler.com/doc/vhdI2proc.pdf

Avoiding Common Errors

 We developed a pre-processor perl tool (v2p) to avoid
latches, and other similar coding errors .
— The .vhm file is a dialect of vhdl; sensitivity lists are generated by the
perl script

* This has resulted in highly reliable RTL, and greatly increased
the efficiency of our internal development process

2 >.

Even Further : Automated ISA ->
RTL Sim->FPGA->ASIC->SW Tools Flow

— —

v
FPGA Verification ASIC Flow Docs

Software
Firmware Flow
2015/03/15 23

18/36b S-Core DSP

 Development in Progress (Target Completion: August 2015)

Pa A
) 9| 1L
LP) I dd
\. Adder DSP ISA and Code Map
LRe-7 | | | PAe-7
1R1W 1R1W 35 3433 2 31 30 2928 27 225 2% 2522120 191817 %15 ¥ B2 N0 98 7 65 43210 primary set
ALU & MAC ofe ALU Xa Xd [X|Y MAC Ya Yd Xae(xi4),Xce(xi6),xie,xi2
LC/LE LA/RA
T T CAX Xin Xin: Xie-2, Xa:Xi{2b'1e,n&1b'1} [Xi Xa+=Xi(w/Mask & Bit Rev.) Yae(yi4),vce(vie),vie,yi2
NOP 11 Xa =Xi4 (for STX/LDX if DA is empty) secondary set
STX xd Xd: A®,2,4,6,M0,2,4,6 xd] @xa = Xd(Xa -> DA[rp,wp]*) *)use DA Xa1(xis),Xc1(xi7),xi1
LDX xd Xd: Xxe-4 8| xd [1 Xd = @a(xa -> DA[wp] *) in some casess Ya1(yis),Xxc1(xi7),vi1
LSHX 1101 LP = ~LP (for two set case) Xi3,vi3: always "e"
Decoder ’
NOP 1111
reserved others Xc/Yc
Literal CcAY vin vin: vie-3, va:vi{2b'1e,n&1b'1} Ya+=Yi(w/Mask & Bit Rev.) vi [17] use cntrol field
(18b) NOP Ya =via 11 [16] "M" mask
STY Xy vyd: A1,3,5,7,M1,3,5,7] @va = vd(vya -> DA[rp,wp]*) Yd [15] "R" bit reverse
LDY Xy vd: Ye-a 1 Yd = @a(Ya -> DA[wp] *) Xd [14:13] DA mode
LSHY (1 LP = ~LP (for two set case)] ee: "_" nop
NOP [T 1 @1: "D" 1-cycle Delay
reserved 1 others 10: "P" Pair
. l) l)] . ADD Ax,Ay,AzZ CIC) AX Az AX:X@,2/Ye,2/AB-3, Ay:X1,3/Y1,3/Me-3, H (C,Az)= Ax + Ay ?1:1;: Pair Load/s;ore
- - - - N SUB AX,Ay,AZ 8 1| Ax Az 2/Ye,2/AB-3, Ay:X1,3/Y1,3/M8-3, AX - Ay Full four accesses
Ae 7 XB 3 Ye 3 Me 7 X19'7 ADD Ax,Ay,Az 1 e(ee Az A2-3, Ax + Ay [8:4] encoded mask position
4R1W 4AR1W 4R1W 4R1W 2R1W SUB AX,Ay,AZ 11|00 Az A2-3, AX - Ay 1-17, the other is reerved
Ax Ay Mx S| Ax Ay Mx Myl |Ax Ay Mx Ax Ay My S Xa Xi ADD AX,Ay,AZ 16|61l Az X1,3/Y1,3/M-3, AX + Ay [1:@] size
[T o SUB Ax,Ay,AZ 11(e1 Az X1,3/¥1,3/M8-3, Az:all (C,Az)= AX - Ay 00: 18b
ADC AX,Ay,AZ 1116 6|A]Ay Az X3/Y3/M1,3, AZ:A1,3,5,7(C,AZ)= AX + Ay + C @1: 1b(+1)
1 SBC AX,AY,AZ 1116 1| Ax| Ay | Az Ay:iX3/Y3/M1,3, AZ:A1,3,5,7(C,AZ)= AX +~Ay + C
T : } T } T 1 ADC AX,AY,AZ 1111686 6|A|A y:A3, A1,3,5,7(C,AZ)= AX + Ay + C
Y ADC AX,Ay,AZ 1111661|A|A :1X3/Y3/M1,3, Az:A1,3, AX + Ay + C
* y %’ * SBC Ax,Ay,Az 1111616|A|A A3, A1,3,5,7(C,AZ)= AX +~Ay + C
| S SBC AX,Ay,AZ 1111611|Ay|A X3/Y3/M1,3, Az:A1,3,5,7 AX +~Ay + C
l <<2.v >>112 \<<2: >>1)2/ ATN Ay,Az 11111860 e|Ax| Az X3/yY3/m1,3, A1,3,5,7explained later
N Ax ay |/ Mo My Adder _ Adder / ScNe Ax,Ay,Ad 1111161 Ay[AX]| Acxe,2/ve,2, explained later
\ ALU Multiplier \ I SCN1 Ay,Ad 1111118666 A explained later
LSHX #n 11111110 8e|n LP = n (Swich to n-th LOOP control set)
i I NOP 11111111111
reserve other patterns
M d the 't
for DIV/SQR MAD Mx,My,Mz 2-3/Y2-3/M4-7, @ 8] Mx My Nz (Mz,MAC)= S(MAC + Mx * My)
MSB Mx,My,Mz @ 1| Mx My Mz (MZ,MAC)= S(MAC - Mx * My)
MUL Mx,My,Mz 1 8] Mx My 3 (Mz,MAC)= SR(Mx * My)
. MAD Mx,Mz 11 1106080 Mx Mz (MZ,MAC)= S(MAC + Mx"2)
m@ Shifter e/1 MAD My, Mz ty:X2-3/Y2-3/M4-7, 1 1100 1] My Mz (MZ,MAC)= S(MAC + My~2)
T MSB Mx,Mz 1 11606 16e| M MZ (MzZ,MAC)= S(MAC - Mx*2)
—|flags MSB My,Mz y:X2-3/Y2-3/M4-7,Mz:all 11011 My Nz (Mz,MAC)= S(MAC - My~2)
Adder(48b) MUL Mx, Mz T1 16 6] W™ W (Mz,MAC)= SR(w2)
MUL My,Mz 2-3/Y2-3/M4-7, 111686 1| My MZ (Mz,MAC)= SR(My*2)
MULD Mx,My,Mz MX:X01/Y01/A45,67,My:X23/Y23/M45,67, 11116 e[M|M MAC=UU(MXL*MyL) ,MZLL=MACL
|—I— MULD Mx,Mx,Mz Mx:X01/Y81/A45,67, M9123,4567(1 1 1 1 @ 1 @ o] Mx MAC=UU(MXL*2) SMZLL=MACL
Mc J MULD My,My,Mz My:X23/¥23/M45,67,M2:140123,4567 [1 1 1 1 © 1 @ 1| My [Mz| MAC=UU(MyL~2) ,MZLL=MACL
(2nd step) MAC=US (MXH*MyL)+MAC>>18
| - 1 (3rd step) MAC=US (MyH*MXL)+MAC ~ ,MZLH=MACL
1T 1 Id (4th step) MAC=S5S (MyH*MXH)+MAC>>18, MZHL=MACL
(5th step) MZHH=MACH
© 80 LSWY #n [T1111118e8e]n]| LP=n (Swichton-th LOOP control set)
; ; c nop 111113311713
Bit Extraction B
s S~ 8w I0
Bit Extension v
[
D-Space reg. Mux Y] Y-mem X-mem
etc. § 2
a.
—H |
| od

What can you do with this now?

 Download bitstream + vmlinux/initramfs, install
on fpga board, boot kernel to shell prompt

« HOWTOs with background info
— Where to order FPGA board(s)
— Download and install xilinx/digilent tools

* Free download for linux/mac, but alas no open source
bitstream compiler yet. OpenOCD installer is todo item.

— Build new bitstream from source
— Program nommu Linux (gcc/binutils/musl toolchain)

Nommu.org

* Watch this space for a Git Repository and a
mailing list.

